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Abstract. The variation of the aerosol optical depth and its first and second spectral derivatives (a  
and a') can be largely described in terms of the spectral interaction between the individual optical 
components of a bimodal size distribution. Simple analytical expressions involving the separate 
optical components of each mode explain virtually all the features seen in spectra of the aerosol 
optical depth and its derivatives. Illustrations are given for a variety of measured optical depth 
spectra; these include comparative simulations of the diurnal behavior of a and a' spectra as well 
as the diurnal and general statistical behavior of a and a' as a function of optical depth (optical 
depth space). Each mode acts as a fixed "basis vector" from which much of the behavior in 
spectral and optical depth space can be  generated by varying the extensive (number density 
dependent) contributions of fine and coarse mode optical depths. Departures from these basis 
vectors are caused by changes in  aerosol type (average size and refractive index) and thus are 
associated with differing synoptical air masses, source trajectories or humidity conditions. Spectral 
parameters are very sensitive to interband errors in measured optical depth data. Third-order 
polynomial fits within the visible-NIR spectral region effectively filter such errors while 
representing the limit of useful extractable information. 

1. Introduction 
Angstrom [1929] showed that the spectral relation between 

the logarithm of aerosol optical depth and the logarithm of 
wavelength is approximately linear. The slope of this 
relationship across the visible spectral region has become a 
robust parameter which is indicative of average aerosol 
dimensions in the submicrometer to supermicrometer particle 
size range. Departures from linearity in the slope of the 
logarithm of optical depth versus the logarithm of wavelength 
are expected [King et al., 1976; Kaufman, 19931 and indeed 
yield information about the non-Junge types of aerosols which 
compose real size distributions [e.g., Foitzik, 1964; Nikitinskaya 
et al., 1973; Tomasi et al., 1983; Stettler and Hoyningen-Huene, 
1993; Villevalde et al., 1994; Eck et al., 19991. 

Aerosol optics in the ultraviolet to near-infrared portions of 
the electromagnetic spectrum are largely influenced by a fine 
(accumulation) mode in the submicron radius range and by a 
coarse mode in the supermicron radius range. Rather than 
assuming a more flexible but necessarily more cumbersome 
optical description in terms of independent discrete bins of a 
generalized aerosol size distribution, one can take the point of 
view that most optical phenomena can be adequately described 

'Now at CARTEL, UniversitC de Sherbrooke, Sherbrooke, QuCbec, 
Canada. 

Copyright 2001 by the American Geophysical Union. 

Paper number 2000JD900245. 
0148-0227/01/2000JD900245$09.00 

by an appropriate choice of two or at most three size distribution 
modes. 

The modal spectral interpretation which results is analogous 
to the Junge/Angstrom approach inasmuch as low-order spectral 
coefficients lead to a description of nature in terms of optical 
parameters which are arguably more robust and repeatable than 
multibin particle size distribution inversions of optical data and 
which may adequately serve the needs of many users of aerosol 
optical data. Much like the classical Angstrom coefficient, these 
indices are not an exact description of nature; rather they are to 
be viewed in the sense of "equivalent" optical parameters which 
provide an intuitive framework for the approximate 
interpretation of microphysical properties. If greater levels of 
sophistication are needed, then one has the option of proceeding 
to higher-order spectral moments and/or more detailed modular 
descriptions of the particle size distribution. 

Such simplistic optical parameterizations are often sufficient 
for the modeling of radiative transfer phenomena and the 
associated applications such as the atmospheric correction of 
satellite imagery. The insights offered by the casting of aerosol 
optical behavior in a more fundamental and robust formulation 
can yield important benchmarks for the validation of aerosol 
dynamics in climatological models. The bimodal approach also 
permits simple and purely optical techniques to be developed 
where the goal is to extract average and characteristic spectral 
coefficients for each separate particle size mode from the 
general spectral behavior of the aerosol optical depth. These 
modal spectral coefficients can in turn be used to extract 
microphysical parameters at a commensurate level of 
sophistication (for example, an effective or mean modal radius 
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being derived from the Angstrom coefficient associated with 
that mode [O'Neill and Royer, 1993; Shifrin, 19951. 

In this paper we demonstrate that simple analytical 
expressions derived from a bimodal parameterization of aerosol 
particle size distributions permit one to explain many of the 
features seen in the measured spectra of the aerosol optical 
depth and its first and second spectral derivatives. These 
expressions capture the essence of what the bimodal approach 
contributes to the understanding of aerosol optics; that much of 
the variation observed in spectral optical depth parameters is due 
to changes in the extensive character of the bimodal components 
(due to changes in their abundance or integrated vertical number 
density) rather than changes in the average size or composition 
of each component. It is our hope that the bimodal approach 
presented in this paper will permit a more intuitive 
understanding of optical depth spectra and lead to alternate and 
standardized techniques for interpreting these spectra. 

2. Theoretical Background 

sum of the optical depth of the fine (f, and coarse (c) modes; 
The total aerosol optical depth can be expressed as a linear 

za = rf + z, (la) 

This relationship can be written explicitly in terms of single 
particle (average) extinction cross sections which can be viewed 
as basis vectors for the generation of all optical depths sharing 
the same intrinsic mode properties (size and refractive index); 

7, = A f C f ( a )  + AcCc(a), (1b) 

where A and A, are the vertically integrated number density 

(abundance) and Chh) and C,(h) are the extinction cross 
sections of the fine and coarse mode respectively. The Angstrom 
coefficient in its most general form can be written as 

f 

d lnz, 
dink ' 

a =  -- 

Given dzldlnh = z dlnzidnh, one can perform a linear 
operation on equation (1) and express the overall Angstrom 
coefficient as the weighted mean [O'Neill and Royer, 1993; 
Shifrin, 19951 

(3) af Zf + a c z ,  a =  
za 

where it must be kept in mind that the component Angstrom 
coefficients (af and a,) as well as the component optical depths 
are in general functions of wavelength. It is worth underscoring 
as well that af and a, (like C and C,) are dependent only on 
average particle characteristics (size and refractive index). 
Equation (3) can be expressed more succinctly as a function of 
only one weighting variable; 

a = af 71 + a,(l - v), (4) 

where q = zf / zu (as per the notation of Tunre' et al., [19991). 

The second order derivative -dlnzu/dln12 or equivalently the 
derivative of the Angstrom coefficient (a') can then be applied 
to (4); 

A plot of a or a' versus zu for a fixed wavelength ("optical 
depth space") will clearly be intrinsically related to a spectral 
plot of these same parameters. This type of relationship is worth 
considering since a versus zU graphs are a common and 
convenient means of representing size and columnar density 
information in two dimensions [e.g. Smirnov et al., 1994, Ahern 
et al., 19911. In optical depth space, one must bear in mind that 
the component optical depths zf and zc are, for fixed modal size 
distributions and refractive indices, functions of abundance. 
Inasmuch as they are unique functions of time, they can as well 
be described as functions of each other and as functions of zu. 

In terms of equations (4) and (5) this translates into a and a' 
being functions of zu through their dependence on q (explicitly, 

one replaces q(zu)  for q in these two equations). The behavior 
of a and a' in optical depth space can then be described by 
higher- order derivatives and their zeros. The first-order 
dervatives are given by simple analytical forms; 

where the derivative of the optical ratio q is given by; 

The influence of this latter derivative can relevantly be 
illustrated by noting that for the case of an influx of fine mode 
particles zc = constant, 5 = z, / zu and thus that the two 
derivative expressions of equations (6) and (7) are 
fundamentally controlled by a 1 / zu product term. 

In the sections that follow we give illustrations using both 
simulations and real data to demonstrate how these simple 
analytical expressions describe much of the behavior of the 
aerosol optical depth and its derivatives in spectral and optical 
depth space. 

2 

2 

3. Illustrations With Simulated Data 

3.1. Spectral Curvature Parameters in Spectral Space 

Table 1 summarizes all the analytical expressions for the 
optical depth spectral derivatives as well as critical spectral 
points for a conceptual bimodal Angstrom size distribution and a 
generalized bimodal size distribution. A brief interpretation of 
these mathematical results in terms of simulated optical depth 
spectra is presented in this section. 

3.1.1. Bimodal Angstrom case. It is instructive to consider 
an idealized "Angstrom" bimodal size distribution case in order 
to better appreciate the spectral behavior of more realistic 
bimodal size distributions. Here one imagines two modes whose 
spectral behavior is governed by different Angstrom power 
laws. Even in the absence of spectral curvature in the separate 
modal contributions there is a curvature brought about by the 
optical depth averaging between the two modes. The left-hand 
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graphs in Figure 1 show this effect where the spectral optical 
depth behavior of each mode (the dashed curves) is governed by 
a linear Angstrom-type relation. It can be clearly seen that the 
total of the two optical depths on a log-log scale (asterisks) is 
nonlinear and that the Angstrom coefficient spectrum is a simple 
weighted mean between the constant Angstrom coefficients of 
each mode (af and ac). The decrease in a from the asymptope 
of af for small wavlength (where zf >> zc or q -> 1) to the 
asymptope of ac for large wavelengths (where zf << zc or q -> 
0) means that a' is always negative with a minimum at the 
wavelength for which the modal optical depths are equal (q = 
0.5 at hi.?. 

3.1.2. General bimodal case. In reality each mode has its 
own spectral curvature which supplements the curvature due to 
modal averaging. The right-hand side of Figure 1 illustrates the 
case of a typical northeastern U.S. coastal aerosol whose a f 
value increases in an almost linear fashion with In h across the 
visible-NIR spectrum. Eck el al., [1999] showed this aspect of 

tends toward an asymptotic value of 4 for very small particles 
(or very large wavelengths), and it is this tendency that 
dominates at shorter wavelengths. In contrast, the absorption 
component of the total extinction optical depth tends toward an 
asymptotic value of unity for very small particles or very large 
wavelength, and it is this tendency that tends to dominate at 
larger wavelengths when the rapidly decreasing scattering 
contribution is rendered negligible compared to the slowly 
decreasing 1'' absorption component. The combination of these 

effects produces a spectral maximum in a, (not seen in Figure 1 
since it is beyond the upper limit of the wavelength scale). This 
increase in the dashed af curve, which one observes in Figure 1, 

effectively translates hlnf to the right relative to the pure 
Angstrom case and induces a maximum in a when the increase 
due to af is balanced by the decrease due to optical depth 
averaging between the modes. 

strong linearity for fine-mode-dominated bio-mass burning 
aerosols at large aerosol optical depths. The increase becomes 3.2. Spectral Curvature Parameters in Optical Depth Space 

distinctly nonlinear, however, as the upper wavelength of the 
spectral interval increases. The increase in the dashed curve 
with increasing wavelength (middle right-hand graph of Figure 
1) is symptotic of more general trends; the Angstrom coefficient 
of the scattering component of the total extinction optical depth 

Table 2 summarizes all relevant derivatives and critical 
points of a and a' for both the bimodal Angstrom case and the 
general bimodal case as a function of aerosol optical depth. In 
this section we give a brief interpretation of these results in 
terms of simulations in optical depth space. 

f 

Table 1. Analytical Expressions and Ordinal Points in Spectral Space 

Bimodal Angstrom Bimodal General 

T ,  = Tf + Tc 

Peak or minimum in a 
a = (a' = 0) 

when q = 0 or 1 or zf = 0 orTf = 

Inflection in a 
at 2, = (a" = 0) 

1 
when q = - or rf =zC 

2 

Extrema and Inflection Points 

at 1 = ,$,,f (a" = 0 )  

when q = 5 or 7f 5 7, 
2 

All spectral derivatives are partial derivatives with vertical number densities held constant. 

qmin and "',in aredefined in Table2. 
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Figure 1. Spectra of za, a, and a' (logarithmically scaled wavelength) for the bimodal Angstrom case (left-hand set 
of figures) and the general bimodal case (right-hand set of figures). ~ ~ ( 5 0 0  nm) and z&500 nm) were set to 0.08 
and 0.03, respectively. Lognormal size distributions [Hansen and Travis, 19741 were used to represent each mode 
in the general case. The properties of the ACC-1 fine mode and the coarse mode employed in the simulation are 
given in Table 4. The wavelengths, h and hinf represent the maximum and inflection points in a (defined in Table 
1) .  

P 

The graphs of Figure 2 are bimodal Mie simulations which 
show the effect of a regular increase in the fine mode abundance 
(represented by a regular increase in z 500 nm)) on the a and a' 
spectra of Figure 1. To produce the family of curves observed, 
the coarse mode optical depth at 500 nm was fixed at 0.03, 
while zf (500 nm) was allowed to increase by factors of 2 from 
0.01 to 0.64 (the curve of Figure 1 was part of this family and is 
indicated with asterisks). The three vertical lines shown in this 
plot represent 500, 650, and 850 nm; the projection in optical 
depth space of the a and a' curves intersecting these lines is 
shown in Figure 3. By comparing Figures 2 and 3, one can 
readily appreciate, both in the bimodal Angstrom and the 
general bimodal case, the link between the behavior of the 
spectral curvature parameters in spectral and optical depth 
space. 

h 

The case of an influx of fine mode particles represented by 
these figures (corresponding to an increase in A in equation 
(lb)) is the most dominant type of aerosol event in urban 
industrial regions or biomass burning regions. This typically 
means that the coarse fraction is small, while the fine fraction 
assumes values between zf - zc to z >> zc. For such conditions, 

a' increases from a negative value to a positive upper limit of a' 
f 

(this trend can be readily observed in the bimodal a' case of 
Figure 3). The minimum observed in both the Angstrom and the 
bimodal a' cases of Figure 3 is dependent on the negative 
"Angstrom term" of a' in Table 1 (the term that varies as the 
square of ar- ac). The zero crossing of the increasing trend from 
negative values near the minimum to positive values at large 7, 
can be seen in the Figure 3 simulations and is observable in 
measured data [Eck el al., 19991. The minimum, which can be 

f 

f 
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Table 2. Analytical Expressions and Ordinal Points in Optical Depth Space 

Bimodal Angstrom Bimodal General 

7 ,  = Zf + 7' 

Extrema and Inflection Points 

Minimum in a' 

I 
'lmin = 

zero in a' 

see Table 1 see Table 1 

seen in the three different wavelength curves, is difficult to 
unambiguously detect since it occurs at values of zf near zc; 

because z, is typically quite small the computation of a' for 
small z becomes quite sensitive to interband errors in zu. 

The spectral derivative a' is composed of the "Angstrom 

term" which tends toward zero at large z, and the weighted 

mean term (qalf + (1 - q)  a', in Table 1) which tends toward a; 
in the presence of large z, (for the case of an influx of fine mode 
particles). An important effect of the coarse fraction is that the 
negative Angstrom term increases the influence of this mode to 

values of 7 ,  beyond the point where the weighted mean term is 
significant. If we associate significant changes in a' to 
differences which are about 10% of the asymptotic limit of a' at 
large zu (i.e. a>) then the weighted mean term is important to 

values of q around 0.9 (or zf/ zc - 9) while the Angstrom term, 

because of the large (aj- a,) factor and given that a;- (3/4) 

is significant until about q near 0.96 (or z f /  7 ,  - 24). 

f 

2 

3.3. Detectable Curvature 

Questions about the information content of spectral optical 
depth measurements can be approached by investigating 
polynomial fits to simulated Mie data perturbed by typical 
measurement errors. The general spectral expression for aerosol 
optical depth can be written as 

where the classical first-order Angstrom relation includes only 

the a,, and a, terms. Bimodal, lognormal-based Mie simulations 
and best fit In(zu) polynomials were produced over a range of 

aerosol abundances (over a range of values of za (500 nm) 
between 0.01 and 0.64. Before applying the polynomial fits, the 
computed aerosol optical depths were perturbed by random, 
normally distributed errors characterized by various root-mean- 
square (rms) magnitudes. The spectral derivatives a and a' were 
then computed from the noise perturbed polynomials. 

The differences between the optical depths computed from 
these polynomials and the exact bimodal (Mie) optical depths 

were then averaged, first over a sampling of spectral zu vectors 
modified by random errors, then over wavelength and, finally, 
over abundance to produce plots of rms differences versus 
polynomial order, The left-most graph of Figure 4 shows the 

variation of these rms normalized differences (Azu /za)mts for 
polynomials restricted to a typical Sun photometer spectral 
region between 0.35 and 1.05 pm, The differences Aa and Aa' 
between the derivatives computed from the polynomials and the 
derivatives of the bimodal (Mie) optical depth curves are shown 
in the middle and right-most curves. The bimodal, lognormal 
(U.S. mid-Atlantic) case of Plate 1 was selected for this 
simulation exercise inasmuch as it represents a severe type of 
bimodal curvature. 

The figure demonstrates the trade-off between the influence 
of pure regression errors (o(zU) = 0) and the measuremental 
noise errors. At low orders, regression error typically dominates, 
and there is a distinct advantage to increasing the polynomial 
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Figure 2. Spectra of a and a' (logarithmically scaled wavelength) for the case of fine and coarse Angstrom modes 
(left side) and fine and coarse general modes (right side). Asterik curves correspond to the curves of Figure 1. The 
vertical lines are specific wavelengths whose representation in optical depth space are shown in Figure 3 (light 
grey, 500 nm; medium grey, 650 nm; dark grey, 850 nm). The lognormal size distributions referred to in the caption 
to Figure 1 were employed to represent the general bimodal case. 

order. As the order increases, the regression errors become 
inconsequential compared to noise-induced errors; the latter 
actually increase with order since more, higher-frequency 
(noisy), spectral features can be accommodated by higher-order 
polynomials. A minimum rms difference is thus defined at a 
polynomial order where these two error sources balance. The 
dependence of the noise-induced error on polynomial order 
demonstrates the filtering capabilities of low-order polynomials 
and the effective noise reduction which can be achieved by 
compromising with spectral fidelity. 

Figure 4 thus suggests that within the visible and NIR 
wavelength range a second or third order polynomial fit would 
encompass any possible Mie type of variation which could be 
detected by a standard Sun photometer with instrumental rms 
measurement errors of better than 0.01 in Since the third- 
order rms differences are or about the same magnitude as the 
second-order differences, it is advantageous to use the former if 
the goal is to detect more subtle spectral variations. It is worth 
noting here that a second or a lower-order polynomial 
necessarily yields a constant a' which excludes any systematic 
variation of this parameter in spectral space. Section 4 
incorporates a number of illustrations which demonstrate that 

there are systematic wavelength variations in a' which can be 
detected after effectively filtering optical depth data by means of 
a third-order spectral polynomial in the visible and NIR (or a 
higher-order polynomial in the case of the visible, NIR, and 
short wave infrared (SWIR)). 

4. Illustrations With Real Data 
In the previous sections, analytical expressions for the 

spectral derivatives of bimodal distributions were derived, and 
the significance of these expressions in spectral and optical 
depth space was illustrated with Mie simulations. In this section 
we give examples of how the simple physics represented by 
these analytical expressions can influence measured optical 
depth spectra. Interband variability due to uncertainties in 
aerosol optical depth must first be understood in order to 
appreciate the significant spectral phenomena which one can 
hope to observe; simple concepts are given below along with a 
real example that underscores the sensitivity of the derived 
spectral parameters to unfiltered data. An example with real 
diurnal data is then presented in order to illustrate, in reference 
to the previous sections, the types of features in spectral and 
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Figure 3. Curves of a and a' as a function of T ,  for the case of fine and coarse Angstrom modes (left side) and the 
fine and coarse general modes (right side). These curves are the projections in optical depth space of the families of 
a and a' curves seen in Figure 2 at the three wavelengths indicated by the vertical bars (light grey, 500 nm; medium 
grey, 650 nm; dark grey, 850 nm). 

optical depth space which one can observe and explain. A 
second example with an ensemble of Sun photometer 
meaurements acquired over a year is then presented in order to 
illustrate how the behavior of a and a' in optical depth space 
can be largely understood in terms of the bimodal expressions of 
section 2. Finally, an example of a thin cloud event shows how 
the bimodal interpretation extends to the case of cloud-induced 
variations in the spectral derivatives. 

4.1. Interband Variability 

Spectral curvature is difficult to measure since it  represents a 
second or third-order effect in a In T ,  versus In h curve. For two 
neighboring wavelengths it can be  easily shown that the relative 
error in a is given by the approximate expression 

where AT, and are illustrated in Figure 5 and (A2Jnet = AT, - 
6 ~ ,  is the net departure from the true difference 62,. The 
difference 67, is the true (Mie) change in optical depth between 

the two wavelengths, while AT, is the measured difference. The 

magnifying effects of the error in an u versus in h computation 
are evident from equation (9a); small values of 67, for 
neighboring wavelength pairs can easily generate large values in 
Aa; as optical depths decrease the instrumental (interband) error 
portion of  AT,)^^^ remains roughly fixed, while 6~~ decreases as 

za (as the product T~ CI A In k.). 
The approximate slope error expression above applies 

equally well to a'; 

Plate 1 illustrates the sensitivity of the spectral curvature 
parameters a and a' (middle and bottom graphs) to interband 
deviations from the type of smooth spectral variation observed 
in the Mie examples of Figures 1 and 2.  The circles represent 
real data, while the solid red curve is a Mie fit using cross 
sections derived for fine and coarse mode lognormal 
distributions. The lognormal bimodal components employed in 
this figure were not obtained by any formal inversion scheme 
but rather were selected in a trial and error type of approach (the 
lognormal parameters were taken from selections in the look-up 
table of Tunre' el d., [19991. The black curve in the top graph is 
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Plate 1. Spectra of za, a and a' for CIMEL and MODIS Airborne Simulator (MAS) data acquired in 1996 [Tan& et 
al., 19991 compared to a bimodal lognormal case where the fine fraction optical depth at 500 nm was 0.028, and the 
coarse mode optical depth at 500 nm was taken as 0.065. The refractive index, rN , and (3 for the fine mode were 
taken as 1.43 - O.O035i, 0.035 pm and 1.5, respectively and 1.44 - O.O035i, 0.4 pm and 1.8 for the coarse fraction 
(seasalt) mode. The solid black line in the top curve is a fourth-order polynomial fit  while the solid curves in the 
second and third figures from the top are the first and second-order derivatives of this curve. The cyan curves 
represent the individual modes. 



1 .D 

3: 

0 01 
t 

2 

1 

0 

b 
- 1  

- -3 
0.5 1-0 1-5 

Plate 2. Spcctra of zu, a and a' (black curves) for CIMEL data acquired during the event referred to in Figure 6 
compared to a bimodal lognormal case derived from Mie calculations (red curves). The black curves representing 
the Sun photometer data are best-fit third-order polynomials. The refractive index, lognormal geometric mean 
radius (rN) and lognormal CJ for the fine fraction were taken as 1.43 - O.O035i, 0.075 pm and 1.5, respectively while 
the analogous parameters for the coarse fraction were 1.5 - Oi, 0.5, and 2.5, respectively. The cyan curves represent 
the individual modes. 
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Plate 3. Values of a and a' versus zu for the data and simulations of Plate 2. The fractional evolution of the fine 
mode as a function of zu at 500 nm wavelength is described by in the small inset figure. This curve was also used 
to generate all the bimodal lognormal (red) curves of Plate 2. 
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Figure 4. Wavelength and optical depth-averaged fitting errors in the spectral range of 350 to 1050 nm as a 
function of the degree of spectral fitting polynomials. The fine mode optical depth ~ b 5 0 0  nm) was allowed to 
increase from 0.01 to 0.64 by factors of 42, and ~ ~ ( 5 0 0  nm) was fixed at 0.03. Random, normally distributed errors 
characterized by a standard deviation (the ~ ( 7 ~ )  labels near each curve) were added to the nominal 'to values.The 
lognormal size distributions described in Plate 1 caption were used to generate this figure. 

a fourth-order regression polynomial fit through the measured 
optical depth data, while the successive derivatives of this curve 
are shown in the middle and bottom graphs. An analysis similar 
to the VIS and NIR simulations of section 3.3 indicated'that a 
fourth-order polynomial would be advantageous for the larger 
spectral region encompassing the visible and shortwave infrared 
spectral region (0.35 to 2.5 pm). It is emphasized that the 
spectral range of Plate 1 was chosen to attain maximum spectral 
curvature for the purposes of illustration; the spectral range and 
the polynomial order in all the other examples in this paper 
correspond to the conditions used to generate Figure 4 (0.35 to 
1.05 pm and third order). 

One can observe that rather small departures from the smooth 
optical depth curves in the top graph are effectively magnified in 

the bottom curves and that in particular, a' is very much 
distorted relative to the bimodal curve. At the same time, the 
derivatives of the fourth-order polynomial fit effectively reduce 
the impact of the deviations from smooth spectral optical depth 
and yield results which are significantly more consistant with 
the bimodal curves. 

4.2. Spectral Space 

Plate 1, in addition to serving as a good illustration of the 
effects of unfiltered interband errors on spectral curvature, 
provides an interesting curvature example that can be viewed as 
a variant of Figure 1. The Mie curves, selected to model this 
spectrum correspond to a relatively small fine particle mode 

Figure 5. Diagram illustrating the influence of intraband optical depth error on the estimate of a (in support of 
equation (9a)). 
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with an effective radius (ref) of 0.053 pm and a small coarse 
particle (sea salt) mode with an effective radius of 0.95 pm (see 
the Notation section for a definition of effective radius). In 
effect the peak in af and an analogous peak in a, are shifted 
toward the left relative to the case presented in Figure 1 (the 
latter peak is at longer wavelengths than appear in that figure). 
A minimum results because of the decrease in a brought about 
by the averaging effects discussed in section 3.1.1 (when zf - z,) 
and the increase in a brought about by the spectral curvature in 
ac after the peak in T~ near 1 pm. Plate 1 is analogous to Figure 
1 in that it shows the case of an extrema in a (zero in a') as well 
as an inflection in a (minimum in a') although the latter cannot 
be seen in the spectrum of the real data. 

Figure 6 shows the 

temporal variation of ~ ~ ( 7 6 3  nm) and a(763 nm) for cloud- 
screened Sun photometer data [Smirnov et al., 20001 collected 
during a diurnal optical depth event on July 13, 1997, at the 
Goddard Space Flight Center (GSFC) NASA in Greenbelt, 
Maryland. The spectral behavior of za before and after its 
significant and abrupt increase at around 1900 UT (UT/24 = 0.8) 
was chosen as another case study which would illustrate the 
bimodal influence in spectral and optical depth space. The 763 
nm wavelength employed in Figure 6 was chosen to demonstrate 
the temporal variability since the bimodal influence of the 
coarse mode on a is much more in evidence in the NIR. The 
optical depth spectra associated with this diurnal event are the 
basis of the illustrations in spectral and optical depth space 
given in Plates 2 and 3 below. 

The middle graph of Plate 2 shows a set of spectral 
maximums in a corresponding to a set of zeros in a' for selected 
spectra; the solid black curves correspond to the diurnal event 
of Figure 6 after the optical depth spectra have been smoothed 
by a third-order polynomial, while the solid red curves were 
generated using bimodal combinations of the two modes given 
in the figure caption. For clarity, only a selection of 
representative polynomial fits to the measured data are 
displayed. The procedure for generating the red bimodal 
simulation curves was to find an af value that could be 
employed as an upper envelope of all measured a curves and 
then, by trial and error, to select appropriate q and za values 
which simulated the major spectra groupings of the measured za, 
a, and a' curves (as well as the behavior in optical depth space 
discussed below in section 4.3.1). Spectral variations of a' in the 
form of a systematic decreasing trend and wavelength- 
dependent zero intercepts are expected from the red curve 
simulations and can be detected in the smoothed data curves. 
The grouping in the polynomial data of large-slope linear 
decreases in a', which are not well represented by the red curve 
simulations, represent narrow spectral features in a whose a f 
curve could only be explained by rather narrow size 
distributions or by admitting the possibility of small but 
spectrally systematic errors in optical depth. 

This example demonstrates that third-order spectral curvature 
can be detected across small to intermediate magnitude za 
spectra limited to the visible and NIR region It should be 
understood that constraining the In za versus In h polynomial fit 
to second order necessarily means that a' is a constant, and for 
example, the zero crossings of the a' curves of Plate 2 could not 
be reproduced. The spectral behavior of the curves with 
increasing wavelength was already noted in the case of Figure 1 
as an optical depth averaging effect between the competing 

4.2.1. Diurnal variation example. 
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Figure 6. Optical depth and Angstrom coefficient variation (763 
nm) as a function of time for cloud-filtered CIMEL data 
acquired during a diurnal optical depth event (July 13, 1997, at 
the GSFC NASA site in Greenbelt, Maryland). The data have 
not yet been smoothed with a spectral polynomial. 

influences of increasing a and the small, relatively constant 

values of ac. 

4.3. Optical Depth Space 

f 

4.3.1. Diurnal variation example. Plate 3 shows measured 
values of a and a' in optical depth space (circles) compared to 
curves generated from a superset of the bimodal components 
and optical mixing ratios (q) employed in the spectral 
simulations of Plate 2 (the small insert figure shows the value of 
q(500 nm) employed to generate the simulated curves of Plates 
2 and 3). The general trend, with some obvious large outliers, is 
reproduced in the a curves, while the comparison between 
simulations and measurements in the a' curves, although 
influenced by the types of problems seen in Plate 2, still shows a 
qualitative agreement. This example incorporates some of the 
spectral and optical depth space aspects discussed in sections 3.1 
and 3.2 while at the same time illustrating a case of apparent 
diurnal nonlinear changes in q induced by simultaneous changes 
in zf and zc, 

4.3.2. Statistical ensemble. An ensemble of 1998 optical 
depth data (910 spectra) was acquired at the GSFC NASA 
station belonging to the AERONET network of CIMEL Sun 
photometers [Holben et al., 19981. The CIMEL Sun photometer 
operates in seven spectral bands (340, 380, 440, 500, 675, 870, 
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and 1020 nm plus a 940 nm water vapor band) and periodically 
scans off the solar disk to acquire sky radiance data. The optical 
depths were measured by two reference Sun photometers (101 
and 37) whose optical depth accuracy at all wavelengths was 
believed to be better than 0.01. These two Sun photometers had 
been calibrated at the Mauna Loa Observatory 4 times and 3 
times respectively during the 1998 season. The cloud-screening 
algorithm of Smirnov et al. [2000] was applied to these data. 

Comprehensive particle size and refractive index inversions 
using near simultaneously measured optical depths and 
hemispherical almucantar sky radiances at four wavelengths 
(440, 675, 860, 1020) were applied to these data according to 
the procedure developed by Dubovik and King [2000]. A total 
of 930 inverted particle size distributions were divided into fine 
and coarse modes at approximately 0.6 pm radius. Figure 7 
shows the resulting particle size distribution inversions 
subdivided into 15 classes obtained by averaging the retrieved 
distributions into bins of 62 measurements ordered according to 
increasing zo (1020 nm). 

A general bimodality can be observed in the curves of Figure 
7 accompanied by significant variations in the features of the 
individual distributions. The increase of the peak radius of the 
fine mode distribution with increasing aerosol optical depth is 
significant and leads to systematic spectral curvature features 
which translate into significant variations in a (see the 
discussion associated with Figure 8 below). The presence of a 
second weaker coarse particle mode at around 2 pm for 
intermediate za means that the representation of supermicron 
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Figure 7. Particle size distribution inversions for 930 sets of 
1998 GSFC almucantar and T~ data. The inversions results were 
averaged over equal numbers of measurements (ordered 
according to increasing za) to form the 15 separate classes seen 
in this graph. The inversion procedure is described by Dubovik 
and King [2000]. 

Table 3. Optical Depth Statistics for the 1998 GSFC Data Set 
(Interpolated to 500 nm) 

Log Distribution 
Parameters 

Optical Depths Corresponding to the 
Mean and Standard Deviations (sd) of the 
Log Distributions 

<log(r)> 2 sd log(2) - sd log(2) log(7) + sd 

rf  -0.74 f 0.35 0.081 1 0.1816 0.4064 
rc -1.80 & 0.29 0.0079 0.0158 0.0316 
T~ -0.70 i 0.35 0.0885 0.1982 0.4436 

The logarithms are to the base 10. 

particles by a single mode necessarily implies a forced 
averaging of this range of particles sizes. It should be noted that 
the presentation of these curves is somewhat deceiving in terms 
of optical effects since the principal optical contribution (the 
volume extinction coefficient) is the product of the differential 
volume size distribution of Figure 7 and an optical kernel which 
is strongly influenced by a l/r multiplicative term (see, for 
example, Hansen and Travis [1974]). The overall optical depth 
statistics derived from the separate modes of Figure 7 yielded 
the logarithmically based results shown in Table 3. 

Figure 8 shows four pairs (four wavelengths) of a versus za 
graphs which permit side-by-side comparisons between 
measurements from the 1998 data ensemble and simulations 
using equations (4) and ( 5 )  and a normally distributed random 
number generator to represent the natural variation in log(zf) 
and log(zc) (constrained by the means and standard deviations 
given in Table 3). Figure 9 shows three pairs of a' versus za 
graphs which compare the 1998 data with simulations (at three 
different wavlengths). The random number generator was used 
to produce distributions of zf and zc at 500 nm, and these values, 
along with fixed Cs C> as a> aC, and atc values, were 
subsequently used to generate ensembles of cx and a' values. The 
details of the simulations and the parameters employed are given 
in Table 4 and Figures 10 and 11. In what follows we give an 
overview of the line of reasoning which led to the final 
procedure used in producing the simulations in Figures 8 and 9. 

It is noted that a correlation was observed between the fine 
and coarse mode optical depths (zc - 0.064 zf at 500 nm). 
However, this correlation, in comparisons with the fixed means 
and standard deviations of Table 3, did not significantly alter the 
general appearence of the simulated graphs in Figures 8 and 9. 

One can observe that the general features of the a and a' 
behavior in optical depth space are captured by the bimodal 
simulations. It was necessary, however, to make supplementary 
assumptions beyond the simple normal distributions in log(:$ 
and log(zc) in order to simulate all the observable trends in the 
real data. The initial a simulations based on equation (4) could 
not duplicate the gradual decrease in a with increasing large za 
at the shorter wavelengths unless (1) a significant increasing 
coarse mode influence with increasing optical depth was 
simulated or (2) the fine mode was allowed to evolve and 
increase in size as the aerosol optical depth increased. 

The correlation noted above between zf and zc was too weak 
to induce the decreasing a trend in the measured distributions of 
Figure 8. The second hypothesis is readily simulated and has a 
physical justification; the bimodal accumulation mode 
observations of Remer et al. [1999] and our own inversion 
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Figure 8. Plots of a versus T, for the 1998 GSFC T, data (the four graphs with asterisks) side by side with 
simulations performed according to the detailed steps given in Table 4 (the four graphs with open circles). The four 
measurement wavelengths are the center (log) wavelengths for each differential calculation (differentials applied to 
the original Sun photometer wavelengths). This choice of wavelengths was more an artifact of data processing 
heritage because the polynomial fitting approach permits any choice of wavelength. The simulated data result from 
Mie computations at a resolution of 50 nm and hence the wavelengths of the simulation graphs are the nearest 
multiple of 50 to the measured wavelengths. 

results indicate a general increasing trend of the average fine 
mode particle size with T, (see Figure 7). To account for this in 
terms of the bimodal computations, we modeled the fine mode 
behavior using a gradual evolution as a (linear) function of T, 
between the values of af computed for the small and large 
accumulation mode models which Remer et al. termed ACC-1 
and ACC-2, respectively (the same type of linear function was 
used for a)), This fine mode evolution produced the correct 
decreasing trend in a but not the rather large vertical spread of a 
values at a given large value of 7,. The adjustment, which 
satisfactorily mimicked the vertical spread, was to permit a 
certain random element in the a upper limit (i.e., one must 
concede a small natural variation in the mode size distribution at 
a given value of T,). 

It is worth noting that the particle size distribution inversions 
of Remer et al. for the 1996 east coast TARFOX campaign and 
the 1998 inversions of Figure 7 are remarkably consistent; the 
r values for ACC-1 and ACC-2 were 0.10 and 0.19 pm, 
eff 

respectively for optical depths roughly between 0.05 and 0.6 at 
670 nm compared to 0.1 1 and 0.17 from the data of Figure 7 for 
optical depths between 0.02 and 0.5 at the same wavelength. 

f 

Remer et al. used a fixed refractive index of 1.43-0.0035i, while 
our inversions yielded refractive index as an output (values - 
1.40 - 0.005i for all Wavelengths). 

Although a vertical wing structure dominates at small z,, the 
measured data of Figure 9 show two features which are captured 
by the simulations: (1) a gradual increase in a' with increasing 
(larger values of) za and (2) a more abrupt increase at smaller z, 
which manifests itself as a greater concentration of points in the 
lower half of the vertical wings at larger wavelengths (this 
separation into vertical halves is less evident in the simulated 
data of Figure 9; one must reference the upper and lower wings 
above and below an extrapolation of the line which bisects the 
phalanx of points seen at larger optical depths). In the first case, 
the evolution of the fine particle mode with increasing T, causes 
an increase in a' and a corresponding increase in a' for large T ~ .  
In the latter case the negative Angstrom term of the a' 
expression in Table 1 is responsible for a slow increase in a' 
from negative to positive values over a range of small to 
intermediate values of T (from T~ - 0 to zf - 24 zc as per 
section 3.2). The bottom right hand-graph of Figure 3, which 
shows a slow rise to asymptotic values of a' under conditions of 
a monotonic increase in T in the presence of a small fixed T ~ ,  is 
an illustration of this latter type of behavior, 

f 

f 

f 
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Figure 9. Plots of a' versus za for the 1998 GSFC za data (the four graphs with asterisks) side by side with 
simulations performed according to the detailed steps given in Table 4 (the four graphs with open circles). See 
Figure 8 caption for more details. 

Figure 3 (and Table 2) also predict minima in a' versus za 
which should vary with wavelength. Such an effect appears in 
the simulated data as an abrupt lower boundary to the ensemble 
of noise-free generated points but disappears with the addition 
of the noise error discussed immediately below. 

The vertical wings in the a' curves at small optical depth (and 
to a lesser degree in the a curves) could only be modeled by 
adding independent optical depth error components to the 
simulations. From equation (9a) and given that 6 ta  I - za a Aln 
h and 6a c a' A h  A, one can write approximate rms error values 
as 

where o(za) is the standard deviation of a random, normally 
distributed set of optical depth measurements. Although these 

expressions are clearly inappropriate for derivatives of 
polynomials fitted to spectral data they do provide an indication 
of the formulation required. The computations employed in the 
creation of Figure 4 were applied to the size distributions of 
Kerner et al. [1999] to yield the relations below for third-order 
polynomial fits in the 0.35 to 1.05 pm spectral region and values 
of o(za) between 0.01 and 0.005; 

These expressions were used as input standard deviations to 
random, normally distributed estimates of measuremental errors 
in a and a'. A value of o(z~) = 0.006 for all bands was found to 
yield a reasonable imitation of the vertical wings in the real data 
and was the value employed to produce the simulated data (the 
shape of the a' distribution in optical depth space was not very 
sensitive to values between 0.006 and 0.01). 

The simulation mechanisms discussed above can be more 
readily appreciated if they are explicitly categorized according 
to the five steps shown in Table 4. Figures 10 and 11 show the 
actual generation of simulation rzsults at a wavelength of 450 
nm in terms of the resulting a versus za and a' versus za graphs 
obtained after each of these five steps. The final graphs (Figures 
10e and 1 le) can be found in the second row and second column 
of Figures 8 and 9, respectively. 

Each elemental graph thus clearly illustrates the impact of the 
separate simulation mechanisms on the final distributions 
obtained in Figures 8 and 9.  One can observe the dramatic 
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Table 4. Steps in the Simulation Process Used to Generate 
Figures 8 and 9 

Step Variation Description 
Added 

Tf 

ZC 

CI and u' f f  

noise 
in I C ~  

u and u' f f  

Lognormally distributed random variation 
constrained by the statistical parameters of 
Table 3 and equations (4) and ( 5 ) .  Simulation of 
the contribution of the natural variation of fine 
mode abundance to T~ (first term of equation 
(1b)). 
As per IC in step 1 but corresponding to the 
second term of equation (1 b). 

The Angstrom exponents afand alf are allowed 

to vary as a linear function of ~ ,~ (500  nm) 
between the two accumulation mode extremes 
of ACC-1 and ACC-2 defined in the notes 
below. 
Normally distributed random distribution about 
each value of T~ contributes to noise in a and a' 
according to equations (1Oc) and (10d) with 
' ~ ( 7 ~ )  = 0.006 for all wavelengths. 

Natural variance of af and a'f The standard 
deviations of both parameters were set equal to 
0.2 for all wavelengths. 

f 

Steps (1) to ( 5 )  correspond exactly to the five simulation 
illustrations shown in Figures 10 and 11. For steps (1) and (2) the 
statistical parameterizations employed are detailed in Table 3. The fine 
and coarse mode size and refractive index parameterizations were 
ACC-1 -> r w f =  0.043 pm; of= 1.8; m=1.43 - 0.0035i; [Hemer et nl., 
19991; ACC-2 -> r N , f =  0.1 pm; bf= 1.65; m=1.43 - 0.0035i [Remer e t  
al., 19991; coarse mode -> rMc = 0.5 pm; 'T, = 2.5; m = 1.5 - Oi 

effects of optical depth noise at small T~ on a and in particular 
on a'. One can also note the important influence of the variance 

in zc and the need to include a natural variance in a in order to 
achieve a significant broadening of the vertical variance in a at 
large zu. The influence of the simulated minimum in a' versus T~ 

curves at small zu is difficult to see at the universal scale chosen 
for Figures 9 and 11, but it does manifest itself as a flat lower 
limit of a' at the smaller T~ values of Figure 1 lb .  

f 

4.4. Thin Cloud Event 

Figure 12 illustrates how the bimodal formulations of 
equations (4) and ( 5 )  can be  used to describe the spectral 
derivatives at 500 nm wavelength in the presence of a thin 
cloud. If one assumes that the optically dominant thin cloud 
plays the spectral role of the coarse mode (a, - atc - 0) and 

given typical values of the fine mode parameters (a  - 2.0 and 
a' - l S ) ,  then the adjustment of a time-independent value of 

z 500 nm) yields the estimated temporal profiles of a and a' 
shown in this figure (the best agreement using a manual 

approach was for zL500 nm) = 0.068). More sophisticated 
inversions techniques could be employed to yield a better fit. 
However, this simple illustration demonstrates that the bimodal 
formulation adequately describes the variation seen in the total 

f -  
f -  

& 

spectral derivatives a and a' in terms of a simple extensive 
variation of cloud abundance (cloud optical depth) mixed with a 
fixed fine mode background optical depth. 

5. Data Processing Considerations 

The analytical bimodal approach described in this paper has 
been investigated for a variety of cloud-screened and non- 
cloud-screened data sets from different AERONET stations. 
Although problems do appear due to the sensitivity of a' to 
measurement errors, the bimodal approach helps to interpret the 
systematic behavior observed in aerosol optical depth data. 

The key step in the current processing chain is the application 
of the third-order spectral polynomial fit to raw aerosol optical 
depth data at six CIMEL wavelengths (380, 440, 500, 675, 870, 
and 1020 nm). Residual errors between the raw data and the 
fitting polynomials are computed and used as indicators of the 
quality of the a and a' computations. This step helps to isolate 
cases where even the filtering afforded by the third-order 
polynomial fails to eliminate relatively strong systematic 

interband errors at small za. Such errors (as suggested by the 
type of spectral variation seen in Plate 1) have relatively little 
impact on estimates of T~ but can have moderate effects on a 
and relatively strong effects on a'. We are currently 
investigating a weighting scheme which weights each 
measurement of a and a' as a function of the residual 
polynomial fitting errors combined with the estimated 
measurement error. 

Current investigations include the employment of equations 
(4) and ( 5 )  to help develop optical aerosol climatologies for 
certain stations in the network. Equation (6) is being used to 
investigate an alternative cloud-screening step which invokes 
the inverse relationship between T~ and a in the presence of 
clouds to better identify such events in an automatic fashion. An 
inversion algorithm for extracting a from a and a', using 1 
equations (4) is being tested. In the future we hope to employ a 
similar type of algorithm for ac extraction in anticipation of the 
next generation of AERONET Sun photometers (whose spectral 
range will be extended to the shortwave infrared and thus be 
more sensitive to supermicron particles). 

6. Conclusions 
The behavior of the aerosol optical depth and its first and 

second spectral derivatives can be described in terms of the 
spectral interaction between the individual optical components 
of a bimodal size distribution. Simple analytical expressions 
involving the separate optical components of each mode explain 
virtually all the features seen in curves of a and a' in spectral or 
optical depth space. 

It was demonstrated that features predicted by the analytical 
bimodal expressions for a fixed choice of bimodal components 
(fixed size distributions) could be found in measured data. These 
included the presence in spectral space of extrema in a and 
zeros in a', the diurnal behavior of a and a' in spectral and 
optical depth space and the general statistical behavior of a and 
a' in optical depth space. 

The anology with basis vectors in a two-dimensional vector 
space is strong; the size and optical properties of each mode are 
fixed and the optical properties of each mode (particle cross 
sections and their spectral derivatives) act as basis vectors from 
which much of the behavior in spectral and optical depth space 
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Figure 10. Simulated points of a versus za at 450 nm wavelength showing sequential simulation steps. The final 
graph, Figure 10(e), corresponds to the 450 nm simulation in the second row and second column of Figure 8. 
Details of the simulation steps are given in Table 4. 

can be generated by varying the extensive (number density 
dependent) contributions of fine and coarse mode optical depths. 
Departures from these "fixed" basis vectors would be clearly 
associated with differing synoptical air masses, source 
trajectories, and humidity conditions. 

It was shown, for example, that deviations from fixed 
bimodal components were needed to explain certain statistical 
features; an increase in the fine particle mode radius with 
increasing zu (and hence a decrease in the upper limit a of a) 
had to be assumed in order to account for the gradual decrease 
of a which occurred between moderate and large zu. In addition, 
a small random element in the upper limit of a had to be f 
assumed in order to simulate the vertical spread of a values at a 

given large value of za. 
Spectral parameters are very sensitive to interband errors in 

measured optical depth data. Data smoothing in the form of 
third-order polynomial fits within the visible and NIR spectral 
region and fourth-order polynomial fits within the visible, NIR 
and short wave infrared spectral region minimize this problem 
and represent the limit of useful extractable information. 

The bimodal spectral coefficient model can lead to simple 
procedures for the multiwavelength extraction of the modal 

f 

spectral coefficients and the optical mixing fraction .r( by 
inverting equations (4) and (5), given a priori spectral 
constraints on the coarse mode spectral coefficients in the 
visible or the fine mode coefficients in the near IR (where the 
fine and coarse mode dominate, respectively). The extraction of 
modal spectral coefficients at different wavelengths can be 
viewed as an end in itself but can as well lead to simplified 
inversion procedures for estimating averaged microphysical 
parameters such as the effective radius of the two modes. 

A combination of the bimodal spectral coefficient relations 
and formal particle size inversion procedures can lead to a 
simplified "basis set" of spectral coefficient relations which 
characterizes the optically important climatological features of a 
given region. Thus the a versus zu or a' versus za statistics of a 
network station can be represented by simple generating 
equations which can be used, for example, as indicators of 
aerosol bimodal type for use in radiative transfer models. 

The relevance of this analytical approach in the face of 
sophisticated ground-based inversion techniques requires some 
comment. Formal inversions for particle size and refractive 
index are an inevitable and necessary tool for understanding 
local aerosol dynamics. On the other hand, the bimodal 
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Figure 11. Plots of a' versus 'so at 450 nm wavelength showing sequential simulation steps. The final graph, Figure 
l l (e) ,  corresponds to the 450 nm simulation in the second row and second column of Figure 9. Details of the 
simulation steps are given in Table 4. 

approach provides a robust basis for comparison with the 
inversion results and underscores the observation of significant 
features in the retrieved particle size spectra. Because it is a 
purely optical approach, it is independent of any smoothing 
constaints or intermediate parameters employed in the 
inversions. It is also worth noting that complete inversions 
which use both spectral and angular information are acquired 
much less frequently by instruments such as the CIMEL 

radiometer of AERONET and thus that the type of spectral 
interpretations presented above apply to a simpler but more 
temporally continuous data set of optical depth spectra. 

In more general terms it is often more appropriate to limit the 
data interpretation to the extraction of pure optical parameters if 
the ultimate application is atmospheric radiative transfer. In 
many circumstances it is arguably advantageous and more 
efficient to avoid the intermediate microphysical domain by 

extracting those key optical parameters which are needed to 
adequately understand the radiative transfer physics. 

The characterization of optical depth spectra in terms of 
bimodal spectral coefficients is coherent, for example, with the 
optical inversion strategies developed for the recently launched 
MODIS sensor. The MODIS inversion algorithms incorporate a 
radiative transfer approach based on the division of aerosols into 
fine and coarse modes [Tanre' et al., 19971 and, in fact, are 
focused specifically on inverting q-weighted means of 

individual modal radiances to estimate T ~ ,  reg, and q.  These 
products can directly be compared with or have a direct link 
with the spectral parameters presented in this paper and indeed 
could be recast into the bimodal formulation in order (for 
example) to characterize the extensive versus intensive 
contributions to a within an image. 
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Figure 12. Measured and estimated a and a' at 500 nm as a function of time for a diurnal thin cloud event. The 
estimated values were obtained from fixed spectral derivatives for each mode and a time-independent value of T,. 
(see text for details). These non-cloud-screened data were acquired on August 13, 1998, at Egbert Ontario, Conada, 
using a CIMEL Sun photometer belonging to :he AEROCAN network. 

Notation CC 

A abundance or integrated vertical number density 
(typical units of particleslcm ). 
abundance or vertically integrated number density 
for the fine particle mode. 
abundance or vertically integrated number density 
for the coarse particle mode. 

2 

NIR 
Af 

Ac 

- dlnTc ldlnh. r 

- d h z f  ldlnh. 

a c  

9 
'N 

coarse mode scattering cross section (typical units 
of cm ). 
fine mode scattering cross section (typical units of 
cm ). 

optical mixing ratio T / zU 

near infrared (taken as 0.35 to 1.05 ym in this 
paper, a range that roughly corresponds to the 
CIMEL Sun photometer range). 
aerosol particle radius (units of ym) 
modal radius of a lognormal particle size size 
distribution (rN = rg in Hansen and Travis, [ 19741). 

2 

2 

f 

ci - dln.culdlnh. 

a; dcic ldlnh. 

U'C daf  ldlnh. 

a' dci /dlnh. 

r rff optically effective radius of a size distribution as 
per Hansen and Travis, [1974] (= rN exp (2.5 In2@ 
for a lognormal size distribution). 

In o is the standard deviation of a log riorinal size 
distribution (In (5 is equal to the o g  used i n  Hunsen 
and Travis, [ 19741. 

o 
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standard deviation of a random, normal distribution 

of zu values. 

short wave infrared (roughly 1.0 to 3.5 pm). 
coarse mode optical depth. 

f ine mode optical depth. 

total aerosol optical depth. 

CVCJ 

SWIIZ 

zc 

5 
zl2 
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